A Fixed Point in Partial Sb-Metric Spaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

common fixed point of four maps in sb-metric spaces

in this paper is introduced a new type of generalization of metric spaces called sb metric space. for this new kind of spaces it has been proved a common xed point theorem for four mappings which satisfy generalized contractive condition. we also present example to con rm our theorem.

متن کامل

A RELATED FIXED POINT THEOREM IN n FUZZY METRIC SPACES

We prove a related fixed point theorem for n mappings which arenot necessarily continuous in n fuzzy metric spaces using an implicit relationone of them is a sequentially compact fuzzy metric space which generalizeresults of Aliouche, et al. [2], Rao et al. [14] and [15].

متن کامل

On the fixed point theorems in generalized weakly contractive mappings on partial metric spaces

In this paper, we prove a fixed point theorem for a pair of generalized weakly contractive mappings in complete partial metric spaces. The theorems presented are generalizations of very recent fixed point theorems due to Abdeljawad, Karapinar and Tas. To emphasize the very general nature of these results, we illustrate an example.

متن کامل

Fixed Point Theorems For Weak Contractions in Dualistic Partial Metric Spaces

In this paper, we describe some topological properties of dualistic partial metric spaces and establish some fixed point theorems for weak contraction mappings of rational type defined on dual partial metric spaces. These results are generalizations of some existing results in the literature. Moreover, we present examples to illustrate our result.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Analele Universitatii "Ovidius" Constanta - Seria Matematica

سال: 2016

ISSN: 1844-0835

DOI: 10.1515/auom-2016-0062